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Abstract. To illustrate the plausibility and difficulties involved in problems that require a 
modification of the winding number notion, we study the statistical model of a long chain 
entangling with a straight rod, and calculate the statistical rate for the chain to become 
disentangled using the reaction rate point of view. For the measure of entanglement the 
usual distinction between the clockwise and the anti-clockwise winding numbers is no 
longer applicable because, as far as the mutual snaring is concerned, only the sum of these 
two numbers is relevant. We perform the calculations for the equilibrium case with a small 
friction and the static case with a large friction. Our results are consistent with the prediction 
of the existing phenomenological 'tube' model for polymers. 

1. Introduction 

The concept of the winding number is widely used in the physical and mathematical 
problems. For instance, it is related to the Biot-Savart law of electromagnetism, and 
can be easily calculated as 

where rI, r, are two arbitrary loops and r'= dr/ds with s being the arolength parameter 
along the loop. Equation (1) contains both the clockwise and the anticlockwise windings 
(denoted by n, and n, separately), and n, is equal to n,-n.. This expression is 
independent of the detailed shapes of the loops [ I ]  and is known as the 'Gauss 
invariant' of the loops. Although this formula strictly applies to closed loops only, it 
is frequently used for open loops: one may imagine the finite strings to be extended 
and to close on themselves without additional entanglement. 

However there are circumstances when the winding number concept needs to be 
modified. For example, in the normal states of the high-transition-temperature super- 
conductors charged particles are believed [2] to be strongly coupled to the fluctuating 
spin background, and the spin backtlow accompanying the particle motion introduces 
an extra phase (+) to the Hamiltonian, which mimicks the Aharonov-Bohm phase 
from a real magnetic field. After averaging over the rapid quantum fluctuation intrinsic 
to these systems: 

t Present and permanent address: Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 
30043, Republic of China. 
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where oCh is the intrinsic fluctuating frequency and f denotes the time, this phase 
becomes a negative definite quantity [3]. Since b ( r )  fluctuates independently at different 
spatial points, in the imaginary-time path integral formalism this negative quantity 
suppresses the paths that enclose a large area irrespective of their handednesst [4], 
and therefore the distinction between the clockwise and anticlockwise winding numbers 
is to some extent not applicable. This is illustrated in figure 1. The total flux in case 
(a]) being the sum of fluxes of regions 1 and 2, q41+2C$2. it becomes 

((41 +24,)*), =(63+4(&) 

after the Gaussian averaging, (. . .)+, over +(I) at all r. While for case (a2), the result 
is just (4;) which cannot be obtained by assigning a positive weight to the anticlockwise 
winding as the clockwise one. Neither is it correct to put the absolute sign over the 
total flux, which will give zero for case (b2) while in fact it is equal to (C$i)+(&) the 
same as case (bl). 

Figure 1. Examples of close loops which illustrate the inadequacy of the winding-number 
definition (see text). Arrows denote the direction of the path. 

Another example is the description of entanglement$ for polymer chains in dense 
solutions or melts, which is crucial in giving rise to the interesting viscoelastic behaviour 
[SI. For these systems the concept of ‘tube’ (for a review, see [7]) has been fruitfully 
employed as a phenomenological way of modelling the confinement (due tn the 
excluded volume and entanglement of the chains). The ‘tube’ simulates the fact that 
polymer chains are massively entangled with one another and, when the density is 
high, therefore cannot move freely in the sidewise directions. Microscopically if we 
try to describe the degree of entanglement, say, between two chains, the usual notion 
of the winding number needs to  be modified because, as far as muture snaring of the 
chains is concerned, both the clockwise and anticlockwise windings should be given 
a positive weight. This concept has been proposed [8] by des Cloizeaux and other 

t In the lattice case, this corresponds to the ‘retraced path restriction’ described in [4]. 
t Many people have contributed to this problem, especially Edwards and Dai, and de Gcnnes. References 
can be found in [5 ] .  Concerning different aspects of topological entanglements for polymers. a detailed 
discussion and further references can be found in 161. 
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authors?. They analyse the mean square linking number, i.e. squaring equation (1) 
before averaging over all possible configurations of both chains. Providing the chains 
are very long, these windings can be considered as independent, and thus the former 
quantity counts the total number of windings with the same positive weight (negative 
sign for the anticlockwise windings has been erased by the squaring). 

In this paper we shall study a simplified scenario for the second example: the 
entanglement between a long chain and a long straight rod [6]. Firstly the measure of 
the entanglement is introduced and compared with the usual winding number notion 
of equation (1). At finite temperatures we treat the thermal agitation of the chain by 
an ensemble averagc, and calculate the reaction rate for the chain to become disen- 
tangled from the rod. Derivations are shown explicitly for both the equilibrium case 
with a small friction and the static cc'e with a large friction. Finally we discuss 
consistency of our results with the p r e d d o n  of the phenomenological 'tube' model 
for polymers. 

2. Measure of the degree of entanglement 

Since both the clockwise and the anticlockwise windings ( n ,  and n.) serve equally to 
describe the snaring of the chain on the rod, we use n,+n,  (denoted by n2) as the 
measure for the entanglement. It will be explained later that detailed calculations of 
n2, as in [SI, can be circumvented by a simple scaling argument. Note that n2 is different 
from the Gauss invariant formula, equation (l), which is equal to their difference 
n, - n. = n,.  Since we shall be discussing the rate with which the chain disentangles 
itself from the rod, the time derivatives of n,  and n2 (denoted by ri, and l iz) and their 
distribution functions need to be considered. As usual we use f to denote the time, 
and hence dn,,,/dt. 

and f4 to denote the probabilities for finding n , ,  n,, n, and n2. In 
general, f4 can be written as: 

Use f,, h, 

fa(&) = le dn, 1-1 dn, Q(ric, nr)8(i2- ii,- &.) (2) 
-m 

where Q(&,  ria) is the probability of finding tic and ri.. Since in equilibrium the thermal 
agitation has no prejudice toward either increasing or decreasing n,: 

Q(k, -C) = Q ( k ,  k). 
By changing the variable ria in equation (2) to -ti*, it gives thatf4(ri2) is equal tof3(nz) 
which is relatively easier to find$. In the large friction case, if the deviation from 
equilibrium is small the above arguments still hold for the lowest order approximation. 
However, note that fi is different from &, and the distinction between n ,  and n2 is 
still necessary. 

f o r h ( n J ,  

f 2 h 2 )  = (% - nc - na))c"rcmblc average 
eo 

) (3) ='I do eiuun,(e-im,(n,+n,) 

T By Pohl. des Cloizeaua and Ball, and Duplantier. References can be found in [SI. 
t To avoid confusion, the reason why& is expressed as a function of n2 here, rather than ti , ,  is that we are 
equatingfi to fi for which the variable is ri,. 

2w -m 
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where the ensemble averaging is over all possible chain configurations. Expand the 
exponential inside (. . .) into polynomials, 

w 2  
2 

I - io(n,+ nJ -- ( (n ,+  ti,)')+ o ( ~ ' ) .  

It has been proved by des Cloizeaux [SI, and is in fact reasonable to expect, that 
(n.+n,) is an extensive quantity, i.e. proportional to N where N is the length of the 
chain. Similarly, ( (n ,+  na)') is proportional to N 2 ,  etc. Therefore the (. . .) in equation 
(3) is a function of ON. When the chain is fully disentangled from the rod, n2 = O  and 
equation (3) can be shown to have the following dependence: 

(4) 
1 

f 2 ( n 2 =  0)s- 
N 

by changing the variable O N  to w'. 

the z-axis. It is straightforward to obtain: 
For our model, set the r2 chain in equation (1) to be the rigid rod which lies along 

-x'y+xy' 
n*=J' ,  ds x 2 + y Z  

where ( x ( O ) , y ( O ) )  and ( x ( N ) , y ( N ) )  are the positions of the chain ends (the z- 
coordinate does not affect the winding number). Caution needs to be taken in distin- 
guishing between the arc-length derivative x' and the time derivative x. Equation (6) 
being dependent only on the end points of the chain is consistent with the 'Gauss 
invariant' property of the winding number. That is, ri, cannot depend on how much 
the middle of the chain wriggles-the only change to n,  must come from the movement 
of end points. When expressed in the Fourier conjugates (q,q+) of (s, rT) where the 
sub-index T denotes the transverse direction, equations (5) and (6) become 

-[same term but with s = 11 (8) 

where R is the transverse position of centre-of-mass of the free chain which will be 
set to be at the origin, and 

x sin x -cos x m 

dx 

D(-qT)=jds[$iqr, e'"'] exp(iqr~rqe'") .  (9) 

Note that for (n2) at equilibrium the rate formula needs to be multiplied by a Heaviside 
step function, .9(ri2), because ri2 is equally likely to be positive and negative. When 
the friction is large, ri2 has a preferred direction and we do not need O(n2). 
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3. Reaction rate for disentanglement 

3.1. Equilibrium case with a small friction 

The potential energy of a long chain is mainly of entropic origin, and correspondingly 
does not amve at an Arrhenius formula with an exponential temperature dependence. 
We proceed by calculating the ensemble average of the rate, (dn2/dt)8(n,), where the 
delta function focuses our interest on the moment when the chain is disentangled from 
the rod. The statistical weight is 

where m is the mass of the chain constituent and @ = l / k B T  with T the temperature. 
The equilibrium entropy weight is defined as: 

where I is the unit length of the chain constituent. The small friction limit corresponds 
to the old argument by which the absolute rate theory was established for chemical 
reaction rate constants, where one simply counts the number of times per unit time 
that particles in the tail of  a Maxwell velocity distribution make it over the reaction 
barrier. Friction appears nowhere in this argument (however, we know it must not be 
too low [SI). In the reaction rate theory, the time average in the crossing rate: 

rate= lim - S(t - ti) dt (12) 
1 '3cc 2t' J'' -,. 

(where ti are the instants at which the reaction is achieved) is replaced by an ensemble 
average, 

rate = (ii2e(n2)8(n2)}cn.embleauerag~ 

= f i ( O )  jcc rizf3(&) d &  (13) 

where the &function guarantees the counting over forward crossings only. Having 
shown that f4(ri2)=f1(ri2) and fi(O)Ocl/N, we proceed to calculate the average (riJ 
with the weight: 

0 

where 

p, =e qr, 

and a = 3/21'. After performing the Eq integration, we get 
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Since the weight in equation (14) favours small l iql and small r i ,  (they are proportional 
from equation (8)), large-w contributions will be more important when we integrate 
over w later. This enables us to use the saddle-point method in evaluating equation 
(16). Using the well known completeness property: 

the exponent on the right-hand side of equation (16) can be simplifiedt to (note that 
from now on, numerical constants will be omitted in order to concentrate on the N 
and p dependences): 

where Q is the magnitude of Q = &pq/q. The saddle points are obtained by taking 
the gradient with respect to p4: 

Multiplying both sides of equation (18) by l /q  and summing$ over q enables us to 
solve for Q: 

Putting equation (19) back in equation (18) gives: 

and the parameter dependence of equation (16) can be extracted to be: 

It may seem puzzling at first glance that, when we go from the left-hand side of equation 
(21) to the right-hand side, the coe5cient of w in the exponent changes from being 
pure imaginary to a real number. This is totally due to the ensemble averaging, after 
the first of which over iq the lowest @-dependent term is of order w 2  with a real 
coefficient (see equation (16)). The overall N and p m  dependence of the disentangling 
rate in equation (13) is then: 

rate=f2(0) lom dri ti lm do exp[ iwri -- 
-m J" 1 

1 
N'.'JjSiii 

oc 

where the property L(0) 

t Since the e is the transverse direction and its magnitude scales like QIm, the two-dimensional qr 
integration in equation (16) exhibits the unit of IqrI2. i.e., NfQ' .  
t Since q s  are integer multiples of ZnlN, the summation over l/q' gives roughly (N/Zn)' when N is large. 

1/ N from equation (4) has been used, 
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3.2. Static case with a large friction 

In the large friction limit the absolute rate theory breaks down [9] and the Fokker- 
Planck equation is reduced to the Smoluchowski equation [lo]. The statistical weight 
becomes 

( * o + $ * * )  . exP[ -Gj!, (32] 
where 

*O = *a + a* 

and 7 is the friction constant of the chain. The potential energy U for our model 
consists mainly of the entropy of the chain. Note that the deviation, &b, from equilibrium 

is necessary to avoid a null result because (V,,+pV,iU)+a=O. We choose the 
probability for the occurrence of a particular 8t) on the basis of the usual entropic 
considerations: the probability for the distribution I)~ to occur is 

exp(entropy) S((energy)) G(static constraint) 

The first Lagrange parameter, A , ,  corresponds to a given average energy of the system, 
while the second parameter, Ai?. restricts to +os that obey number conservation (in the 
stationary case of interest here). The static constraint can be obtained from the lowest 
order of the Smoluchowski equation [lo] as: 

where a =;I2. For small S$, the exponent in equation (26) can be expanded up to the 
second order of a$, and the weight function is of the Gaussian form. 

Since ri, is linear in dr/d# from equation (6), only the second term in the statistical 
weight, equation (23), contributes to (riI)  (because odd functions of dr/d# are averaged 
to zero). Now (ri,) is of the order of Idr/dt12 which, when multiplied by the 1/77 
coe5cient in equation (25), gives us the expected l / m &  coefficient. 

Using the definitions of equations (15) and (24), we expand &JI in terms of the 
Hermite polynomials: 

W - B C  a.H.(p) exp[ -: Ipq12] (28) 

where n denotes all the ns and p 2 = X ,  [p,1’. The advantage of using the Hermite 
polynomials is that their normalization relation involves an exponential weight which 
makes the Gaussian weight of 8iJ look quadratic: 

where 
E” = 2”n!. 
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The equilibrium entropy weight in equation (1 I),  when normalized, is expressed as: 

@e = B exp(-p2) 

where 

Similarly the static constraint in equation (27) can be written as: 

Ca.C.(p)=O 
n 

where 

Notice that when the constraint equation is enforced by a &function: 

care needs to be taken not to bring in extra spurious dependence of N or 0, which 
can only be checked in the end. 

The weight of the ensemble average is: 

where 

and Ye and 9 denote the real and the imaginary parts. The exponent (. . .) is equal to 
the sum of the two exponents in equations (29) and (31) which, when completed in 
a square form, can be expressed as: 

Since the a.-integration in equation (33) ranges from --OO to m, the argument inside 
the bracket of equation (34) can be shifted and redehed as a.. The third term in the 
denominator of equation (32) does not contribute because it is odd in U,, and the first 
term equals one from the normalization condition. Then ljdenominator can be 
Taylor-expanded as: 

1 - a@ Il dp, + O((W)'). (35) 
9 

For the non-equilibrium case, the disentangling rate is defined as: 

rate = svcIngc 
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where, in contrast to equation (13), a step-function is not needed. Since the deviation 
ti$ is small, we expect f2 (nz)  to be close to the equilibrium distribution (denoted by 
&), and the above equation can be written as: 

m 

rate =f2,e(0) I-, if3(&) dri2 

m 

=f2,.(0) 1 k M 4  di ,  (36) 
-m 

where &(O)CC 1/N from equation (4), and 

f&i,)=(8(ri1- &+ria)) 

Since ri, is proportional to u4 from equation (6) ,  only the third term in the numerator 
of equation (32) (also h e a r  in uq in order not to be averaged to zero) is important 
for the ensemble averaging in equation (37). But because this term is also linear in 
a$, the first term in equation (35) does not contribute after the averaging over a.. Up 
to now, equation (32) has been simplified to: 

Note that the p’ variable in the last integral is just a dummy variable in distinction 
from the original p. After performing the a. integration, we find that both the linear 
and quadratic terms do not contribute, which means that the shift of a. due to the intro- 
duction of the static constraint is crucial. Without the static constraint, the averaging 
rate is zero (the reason is that the last integral in equation (38) without the C,,( p )  is 
non-zero only when U are all zero, but in this case LqHo e-p2 gives zero). Equation (38) 
now becomes 

where ln is defined as: 

ln= ~ , , ( p ‘ ) ~ . ( p ’ )  e-(P’)’ Il dpb. s q 

It can be simplified further after the p integration: 
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The expression for ri, is in equation (8), and because of equation (17) the s = l  
term does not contribute after the i, integration. The two-dimensional integration over 
qr gives 

where the definition of 

is the same as before. Similarly equation (37), after integrating over i4, becomes 

X (2v) ’pmN ‘P  [ - i ~ ~ i ~ s ]  IQI’ 

The exponent on the right-hand side can be expressed roughly as 

P’ exponent= -Z (p9I2+ln Q, -2  In Q-- 
4 PmQ” 

(43) 

When p is large, the saddle-point solutions satisfy: Qx = 0, Q, = N, p4,,x = 0 ,  p9,y = I /  Np,  
and = %N. We can check that: 

is independent of N when N is large. This is consistent with the requirement that the 
expression of equation (30) for the static constraint should not introduce any further 
N dependence. We can further estimate that 

From the above results, we deduce the parameter dependence of equation (42) as: 

where the coefficient of p changes from being pure imaginary before the ensemble 
averaging to a real number similar to equation (21). Equation (37) can be shown to 
scale like: 

fdnJ = 70“ 
and 
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Finally, the parameter dependence for the disentangling rate in equation (36) can be 
extracted as: 

1 
rate=fi(n,= O)(nJ-- 

qpmNZ‘ 

Compared nith the rate in equation (22) for the equilibrium case with a small friction 
constant, equation (46) depends more sensitively on the chain length and is inversely 
proportional to the friction constant. 

4. Discussion 

In many cases, e.g., the randomly fluctuating fictitious field mentioned in the introduc- 
tion, the concept of winding number needs further modifications and analytic treatments 
often become intractable if not impossible. The model discussed here is thus useful in 
that it can be solved analytically, at least in the limiting cases. This study was motivated 
by the entanglement of polymers in dense solutions or melts. Although there has been 
a large amount of literature on this topic, most of it is based on the phenomenological 
‘tube’ model [5,7]. In contrast, our studies start from a more microscopic basis. If we 
identify the inverse of the disentangling rate in equation (46) as a characteristic timescale 
for the system, it happens to have the same N (the length of the chain or the 
polymerization) dependence as the viscoelastic time interval ( T) prediction by the 
‘tube’ model [SI. In the ‘tube’ model T is identified as the time for the chain to ‘reptate’ 
out of its original ‘tube’, which equals [SI: 

(length)’ 
diffusion constant 

diffusion time = 

where k,T/q comes from Einstein’s relation?. As far as the prediction of T is concerned 
the phenomenological model is far simpler$ [ 151. However, our model provides a more 
microscopic basis and illustrates the plausibility of an analytic approach to problems 
which require similar modifications to the winding number concept. 
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